

9

Prot. 54/02.08.2019

12 AGO. 2019 BOT. 292043/51A12 Spett.le

Regione Calabria – Cittadella Regionale Dipartimento Ambiente e Territorio Viale Europa, Località Germaneto 88100 Catanzaro

e P.C.

Regione Calabria – Cittadella Regionale Dipartimento Attività Produttive Settore Politiche Energetiche Viale Europa, Località Germaneto 88100 Catanzaro

Crotone, 02.08.2019

Oggetto: Trasmissione risultati autocontrolli delle emissioni in discontinuo linea E1 e linea E2. Decreto di Autorizzazione Unica DDG n°18231 del 12/10/2009 (volturato con DDG n°2209 del 24/02/2012) all. 2 – Piano di Monitoraggio e controllo - punto 3.1.5 Emissioni in aria – tabella C.6.6 Monitoraggio in discontinuo - Centrale termoelettrica di Crotone, come da VS prot. 162528 del 16.05.2017 e prot. 167297 del 19.05.2017, Regione Calabria – Dipartimento Ambiente e Territorio – Settore 3. – Punto 1.

Con la presente la società Biomasse Crotone S.p.A., con sede legale e operativa in Crotone, Strada Statale 106 – Z.I. iscritta al registro Imprese di Crotone – codice fiscale e numero di iscrizione 03200440794, R.E.A. 174714, P.IVA 03200440794, **DEPOSITA** presso i Vs. uffici copia:

- 1. Su supporto digitale;
- 2. In formato cartaceo;

dei rapporti di prova relativi agli autocontrolli delle emissioni in discontinuo della linea 1 e della linea 2 senza i parametri PCDD-PCDF-IPA, effettuate dal laboratorio accreditato Laser Lab rispettivamente nei giorni 17/06/2019 e 18/06/2019 come previsto dal Decreto di Autorizzazione Unica DDG n°18231 del 12/10/2009 (volturato con DDG n°2209 del 24/02/2012) all. 2 – Piano di Monitoraggio e controllo - punto 3.1.5 Emissioni in aria – tabella C.6.6 Monitoraggio in discontinuo - Centrale termoelettrica di Crotone.

Pagina 1 di 2

Biomasse Crotone S.p.A. a socio unico

Cap. Soc. € 1.181.700,00 i.v. Numero REA: KR - 174714 P. IVA: 03200440794

Codice fiscale: 03200440794

Sede Legale e Operativa

S.S. 106 – Z.I. – 88900 Crotone

Tel. 0962.938794 - Fax 0962.938793

PEC: <u>info@pec.biomassecrotone.it</u>
Web: <u>www.biomassecrotone.it</u>

UNI EN ISO 9001:2015 UNI EN ISO 14001:2015 UNI ISO 45001:2018

Allegati:

- 1.Rapporto di prova n.13472/19 Punto di emissione E1 (formato cartaceo);
- 2. Rapporto di prova n. 13471/19 Punto di emissione E2 (formato cartaceo).
- 3. CD contenente file in formato pdf dei suddetti Rapporti di prova.

Francesco Cardamone,

Direttore di Stabilimento

Pagina 2 di 2

Sede Legale e Operativa

S.S. 106 - Z.I. - 88900 Crotone Tel. 0962.938794 - Fax 0962.938793

PEC: info@pec.biomassecrotone.it

Web: www.biomassecrotone.it

Biomasse Crotone S.p.A. a socio unico

Cap. Soc. € 1.181.700,00 i.v. Numero REA: KR - 174714 P. IVA: 03200440794

Codice fiscale: 03200440794

LAB Nº 0142 L

Membro deali Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Biomasse Crotone S.p.A. a socio unico

Serv. Sicurezza, Salute, Ambiente e Qualità

SS 106 Zona Industriale - 88900 - Crotone KR P. IVA 03200440794 Cod. Fisc.: 03200440794

Biomasse Crotone S.p.A, a socio unico

Questo Rapporto di Prova riguarda solo il campione sottoposto a prova così come ricevuto. Non può essere riprodotto parzialmente salvo l'approvazione scritta del Laboratorio

Le prove contrassegnate da asterisco non sono accreditate Accredia

Foglio 1 di 6

Chieti, li 19/07/2019

Protocollo n Destinatario

RAPPORTO DI PROVA N. 13472 / 19

Tipo di campione

: EMISSIONE ATMOSFERICA

Committente

BIOMASSE CROTONE S.p.A.

S.S. 106 Zona Ind.le - Loc. Passovecchio

88900 CROTONE (KR)

Insediam, analizzato

: BIOMASSE CROTONE S.p.A.

S.S. 106 Zona Ind.le - Loc. Passovecchio

88900 CROTONE (KR)

Campionato da

: NOSTRO TECNICO

Data di inizio prelievo Data di ricevimento

: 17/06/2019 25/06/2019

Temperatura all'arrivo

Campione refrigerato

Rif. campione

57432/1

Tecnici campionatori

: Domenico Tricarico, Saverio Vito

DESCRIZIONE DEL PUNTO DI EMISSIONE:

Punto di emissione

: E1

: N:

Provenienza

: Caldaia linea 1

Coordinate GPS

39°5'55"

E: 17°4'35"

Altezza del camino (da quota suolo) (m)

50,00

Altezza del punto di prelievo (da quota suolo) (m)

Sistema di abbattimento

: 21,00

: Impianto di dosaggio SNCR, Impianto dosaggio bicarbonato, Precipitatore

Condizioni operative

Il campionamento è stato eseguito, come definito dalla Committente, nelle più gravose condizioni di esercizio,

Piano di misurazione

del 13/06/2019 nº 122844 Pacchetto 8

Combustibile utilizzato

: Biomasse solide

Norme di riferimento

SCELTA DEL PUNTO DI MISURA:

: UNI EN 15259:2008

Condizioni effettive di prelievo

: Numero di flange di campionamento

:> 5 diametri idraulici

: 2

Lunghezza tratto rettilineo a monte delle flange Lunghezza tratto rettilineo a valle delle flange

:> 5 diametri idraulici

CONDIZIONI DI NORMALIZZAZIONE:

Temperatura :273,15 K

Pressione

: 101,3 kPa

Tenore ossigeno di riferimento (nell'effluente gassoso secco) : 6,00 %vol.

Sede centrale e legale Via Custoza, 31 - 66100 Chieti (CH) | Tel. +39 0871 564 343 | Fax +39 0871 564 443 | mail@laserlab.it | www.laserlab.it Laserlab S.r.I. Unipersonale, Società soggetta a Direzione e Coordinamento da parte di LabAnalysis Group S.r.I. Cap. Soc. €100.000,00 int. vers. Registro Imprese di Chieti C.F. / P.I. 01532600697 R.E.A. CCIAA di Chieti n. 94054

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC

Foglio 2 di 6

RAPPORTO DI PROVA N. 13472 / 19

RISULTATI ANALITICI

CARATTERISTICHE GEOMETRICHE

DATI AMBIENTALI

Direzione flusso allo sbocco : Verticale Geometria sezione di prelievo : Circolare Pressione (ambiente) (Pa)

 $: 101400 \pm 990$

Temperatura (ambiente) (°C)

: 31,00

Dimensione sezione di prelievo (m): 1,62 Area della sezione di prelievo (m²): 2,0612

Parametro	UM		I MIIS	ura	
rarametru	OM	Data/ora inizio I	Durata (min)	Risultato	IM
Metodo di Prova: UNI EN 14790:2017					
Contenuto di vapor d'acqua del gas umido [f] Metodo di Prova: UNI EN 14789:2017	% v/v	17/06/19 11:15	30	17,9	± 2,5
Ossigeno (O ₂) [f] Metodo di Prova: ISO 12039:2001 (escluso il punto 7.3, 7.4, 7.5)	vol. %	17/06/19 11:15	30	7,53	± 0,75
Biossido di carbonio (CO ₂) [f]	% v/v	17/06/19 11:15	30	14,02	± 2,10
Metodo di Prova: Calcolo				,	
Azoto (N ₂)*	%	17/06/19 11:15	30	60,6	
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E)					
Massa molare media del gas umido*	•	17/06/19 11:15	12	28,299	± 0,051
Densità del gas umido*	Kg/m³	17/06/19 11:15	12	0,781	± 0,011
Temperatura (gas) [f]	°C	17/06/19 11:15	12	166,7	±11,7
Pressione (dinamica differenziale media) [f]	Pa	17/06/19 11:15	12	198	± 20
Pressione (assoluta gas) [f]	Pa	17/06/19 11:15	12	100880	± 990
Fattore di taratura del tubo di Pitot [f]*		17/06/19 11:15	12	0,835	
Wall effect*		17/06/19 11:15	12	0,995	
Velocità (media del flusso) [f]	m/s	17/06/19 11:15	12	18,8	± 1,2
Portata (volumica del flusso)	m³/h	17/06/19 11:15	12	140000	± 15000
Portata (volumica del flusso normalizzata)	Nm³/h	17/06/19 11:15	12	86300	± 9600
Portata (volumica del flusso normalizzata secca)	Nm³/h	17/06/19 11:15	12	70800	± 7900
Portata (normalizzata secca corretta per l'ossigeno di riferimento)	Nm³/h	17/06/19 11:15	12	63600	± 8700
Portata Limite	Nm³/h			100000	
Parametro	UM		2° Misu	The last terms of the	
		Data/ora inizio D	urata (min)	Risultato	IM
Metodo di Prova: UNI EN 14790:2017	0//.	17/06/19 14:00	20	47.5	± 2,5
Contenuto di vapor d'acqua del gas umido [f] Metodo di Prova: UNI EN 14789:2017	% v/v	17/06/19 14:00	30	17,5	1 2,5
Ossigeno (O ₂) [f] Metodo di Prova: ISO 12039:2001 (escluso il punto 7.3, 7.4, 7.5)	vol. %	17/06/19 14:00	30	7,61	± 0,76
Biossido di carbonio (CO ₂) [f]	% v/v	17/06/19 14:00	30	14,05	± 2,11
Metodo di Prova: Calcolo Azoto (N _o)*	%	17/06/19 14:00	30	60,8	
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E)	70	17700710 14.00	•••	00,0	
Massa molare media del gas umido*	ka/kmal	17/06/19 14:00	12	28,356	± 0,051
Densità del gas umido*	Kg/m³	17/06/19 14:00	12	0,789	± 0,011
Temperatura (gas) [f]	°C	17/06/19 14:00	12	161,6	± 1,6
Pressione (dinamica differenziale media) [f]	Pa	17/06/19 14:00	12	213	± 21
Pressione (assoluta gas) [f]	Pa	17/06/19 14:00	12	100560	± 990
Fattore di taratura del tubo di Pitot [f]*		17/06/19 14:00	12	0,835	
Wall effect*		17/06/19 14:00	12	0,995	
Velocità (media del flusso) [f]	m/s	17/06/19 14:00	12	19,4	± 1,2
, , , , , , , , , , , , , , , , , , , ,	m³/h	17/06/19 14:00	12	144000	± 16000
Portata (volumica del flusso)	Nm³/h	17/06/19 14:00	12	90000	± 10000
Portata (volumica del flusso normalizzata)	Nm³/h	17/06/19 14:00	12	74100	± 8200
Portata (volumica del flusso normalizzata secca)		17/06/19 14:00	12	66100	± 9000
Portata (normalizzata secca corretta per l'ossigeno di riferimento)	1400.70			00100	

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Foglio 3 di 6

Portata Limite

RAPPORTO DI PROVA N. 13472 / 19

Nm³/h

100000

Repl.	Parametro	Data/ora inizio	Durata	Ossigeno	Concentr	azione (C)	IM	UM	Data I	Flusso di massa	UM	Lin	nite
		prelievo	(min)	(%)	rilevata	corretta (¹)			analisi	(FM)		С	FM
	odo di Prova: UNI EN 13284-1:2017												
1°	Polveri	17/06/19 11:41	60	7,04	4,5	4,8	±2,5	mg/Nm³	05/07/19-05/07/19	319	g/h	30	3000
2°	Polveri	17/06/19 12:57	60	7,92	2,6	3,0	±1,5	mg/Nm³	05/07/19-05/07/19	192	g/h	30	3000
3°	Polveri	17/06/19 14:16	60	7,28	5,0	5,5	±2,8	mg/Nm³	05/07/19-05/07/19	370	g/h	30	3000
Media	Polveri				4,0	4,4		mg/Nm³		294	g/h	30	3000
Meto	do di Prova: UNI EN 14791:2017 Metodo	οA											
1°	Diossido di zolfo (SO ₂)	17/06/19 11:41	60	7,04	2,49	2,67	±0,78	mg/Nm³	05/07/19-08/07/19	176	g/h	200	20000
2°	Diossido di zolfo (SO ₂)	17/06/19 12:57	60	7,92	1,94	2,22	±0,65	mg/Nm³	05/07/19-08/07/19	143	g/h	200	20000
3°	Diossido di zolfo (SO ₂)	17/06/19 14:16	60	7,28	2,63	2,87	±0,84	mg/Nm³	05/07/19-08/07/19	195	g/h	200	20000
Media	Diossido di zolfo (SO ₂)				2,35	2,59		mg/Nm³		171	g/h	200	20000
Meto	do di Prova: UNI EN 14792:2017												
1°	Ossidi di azoto (NOx) (come NO ₂) [f]	17/06/19 14:00	60	7,74	256	290	±18	mg/Nm³	17/06/19-17/06/19	19000	g/h	300	30000
2°	Ossidi di azoto (NOx) (come NO ₂) [f]	17/06/19 15:00	60	7,03	257	276	±17	mg/Nm³	17/06/19-17/06/19	19000	g/h	300	30000
3°	Ossidi di azoto (NOx) (come NO ₂) [f]	17/06/19 16:00	60	7,62	255	285	±18	mg/Nm³	17/06/19-17/06/19	18900	g/h	300	30000
Media	Ossidi di azoto (NOx) (come NO ₂) [f]				256	284		mg/Nm³		19000	g/h	300	30000
	do di Prova: UNI EN 15058:2017												
1"	Monossido di carbonio (CO) [f]	17/06/19 14:00	60	7,74	38,45	43,49	±0,63	mg/Nm³	17/06/19-17/06/19	2850	g/h	100	10000
2°	Monossido di carbonio (CO) [f]	17/06/19 15:00	60	7,03	36,75	39,47	±0,57	mg/Nm³	17/06/19-17/06/19	2720	g/h	100	10000
3°	Monossido di carbonio (CO) [f]	17/06/19 16:00	60	7,62	38,42	43,07	±0,62	mg/Nm³	17/06/19-17/06/19	2850	g/h	100	10000
Media	Monossido di carbonio (CO) [f]				37,87	42,01		mg/Nm³		2810	g/h	100	10000
Meto	do di Prova: UNI EN 1911:2010 metodo (2											
1°	Cloruri espressì come HCl	17/06/19 11:41	60	7,04	15,1	16,2	±3,3	mg/Nm³	17/07/19-18/07/19	1070	g/h	30	3000
2°	Cloruri espressi come HCI	17/06/19 12:57	60	7,92	11,3	13,0	±2,7	mg/Nm³	17/07/19-18/07/19	840	g/h	30	3000
3°	Cloruri espressi come HCI	17/06/19 14:16	60	7,28	12,0	13,1	±2,7	mg/Nm³	17/07/19-18/07/19	890	g/h	30	3000
Media	Cloruri espressi come HCI				12,8	14,1		mg/Nm³		933	g/h	30	3000
	do di Prova: UNI EN 12619:2013												
1°	Carbonio Organico Totale (COT) [f]	17/06/19 14:00	60	7,74	< 0,50	< 0,6		mgC/Nm³	17/06/19-17/06/19	< 37,0	g/h	20	2000
2°	Carbonio Organico Totale (COT) [f]	17/06/19 15:00	60	7,03	0,6	0,6	±1,7	mgC/Nm³	17/06/19-17/06/19	43,1	g/h	20	2000
3°	Carbonio Organico Totale (COT) [f]	17/06/19 16:00	60	7,53	0,7	0,7	±2,0	mgC/Nm³	17/06/19-17/06/19	48,8	g/h	20	2000
Nedia	Carbonio Organico Totale (COT) [f]				0,6	0,6		mgC/Nm³		43,0	g/h	20	2000
	do di Prova: Calcolo												
1°	Sb+Pb+Cr+Cu+Mn+V+Sn*	17/06/19 15:35	60	7,49	0,0200	0,022		mg/Nm³	26/06/19-28/06/19	1,48	g/h	5	500
2°	Sb+Pb+Cr+Cu+Mn+V+Sn*	17/06/19 16:50	60	7,92	0,00860	0,0099		mg/Nm³	26/06/19-28/06/19	0,637	g/h	5	500
3°	Sb+Pb+Cr+Cu+Mn+V+Sn*	17/06/19 18:15	60	7,83	0,0138	0,0157		mg/Nm³	26/06/19-28/06/19	1,02	g/h	5	500
	Sb+Pb+Cr+Cu+Mn+V+Sn*				0,0141	0,0160		mg/Nm³		1,05	g/h	5	500
	lo di Prova: UNI EN 13211:2003 + UNI 1	2846:2013											
	Mercurio	17/06/19 15:35	60	7,49	< 0,0060	< 0,0067		mg/Nm³	03/07/19-04/07/19	< 0,445	g/h		
2°	Mercurio	17/06/19 16:50	60	7,92	< 0,0060	< 0,0069		mg/Nm³ (03/07/19-04/07/19	< 0,445	g/h		
3°	Mercurio	17/06/19 18:15	60	7,83	< 0,0060	< 0,0068		mg/Nm³ (03/07/19-04/07/19	< 0,445	g/h		
	· · ·				< 0,0060	< 0,0068		mg/Nm³		< 0,445	g/h		

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Foglio 4 di 6

RAPPORTO DI PROVA N. 13472 / 19

Repl.	Parametro	Data/ora inizio	Durata	Ossigeno	Concentra	zione (C)	IM	ÚM	inizio/fine	Flusso di massa	UM		nite
		prelievo	(min)	(%)	rilevata	corretta (1)	1118		analisi	(FM)		С	FM
	do di Prova: UNI EN 14385:2004									4 0 222	_ #_		
1°	Antimonio	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		•	26/06/19-28/06/19		g/h		
2°	Antimonio	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034			26/06/19-28/06/19		g/h		
3°	Antimonio	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034		•	26/06/19-28/06/19		g/h		
Media	Antimonio				< 0,0030	< 0,0034		mg/Nm³		< 0,222	g/h		
1°	Arsenico	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		•	26/06/19-28/06/19		g/h	1	100
2°	Arsenico	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		•	26/06/19-28/06/19		g/h	1	100
3°	Arsenico	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19		g/h	1	100
Media	Arsenico				< 0,0030	< 0,0034		mg/Nm³		< 0,222	g/h	1	100
1°	Cobalto	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h	1	100
2°	Cobalto	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h	1	100
3"	Cobalto	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h	1	100
Media	Cobalto				< 0,0030	< 0,0034		mg/Nm³		< 0,222	g/h	1	100
1°	Cromo totale	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
2°	Cromo totale	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
3°	Cromo totale	17/06/19 18:15	60	7,83	0,0030	0,0034	±0,0018	mg/Nm³	26/06/19-28/06/19	0,223	g/h		
Media	Cromo totale				0,0030	0,0034		mg/Nm³		0,22	g/h		
1°	Manganese	17/06/19 15:35	60	7,49	0,0148	0,0164	±0,0090	mg/Nm³	26/06/19-28/06/19	1,10	g/h		
2°	Manganese	17/06/19 16:50	60	7,92	0,0086	0,0099	±0,0054	mg/Nm³	26/06/19-28/06/19	0,640	g/h		
3°	Manganese	17/06/19 18:15	60	7,83	0,0108	0,0123	±0,0067	mg/Nm³	26/06/19-28/06/19	0,800	g/h		
Media	Manganese				0,0114	0,0129		mg/Nm³		0,847	g/h		
1°	Nichel	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h	1	100
2°	Nichel	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h	1	100
3°	Nichel	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h	1	100
Media	Nichel				< 0,0030	< 0,0034		mg/Nm³		< 0,222	g/h	1	100
1*	Piombo	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
2°	Piombo	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
3°	Piombo	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
	Piombo				< 0,0030	< 0,0034		mg/Nm³		< 0,222	g/h		
	Rame	17/06/19 15:35	60	7,49	0,0052	0,0058	±0,0035	mg/Nm³	26/06/19-28/06/19	0,385	g/h		
	Rame	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
	Rame	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
	Rame			·	0.0037	0,0042		mg/Nm³		0,28	g/h		
	Stagno*	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
	Stagno*	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
	Stagno*	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034		_	26/06/19-28/06/19	< 0,222	g/h		
	Stagno*				< 0,0030	< 0,0034		mg/Nm³		< 0,222	g/h		
	Vanadio	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		_	26/06/19-28/06/19	< 0,222	g/h		
		17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		_	26/06/19-28/06/19	< 0,222	g/h		
	Vanadio Vanadio	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034			26/06/19-28/06/19	< 0,222	g/h		
	Vanadio	11700/19 10.10	00	7,00	< 0,0030	< 0,0034		mg/Nm³		< 0,222	g/h		
BIDOI	Vanadio				- 0,0000	- 0,000-1					_		

R Nº 0147 I

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Foglio 5 di 6

RAPPORTO DI PROVA N. 13472 / 19

	Parametro Data/ora Durata Ossigeno Concentrazione (C)	IM	UM	inizio/fine	Flusso di massa	-	Limite					
prelievo	(min)	(%)	rilevata	corretta (1)			analisi	(FM)		C	FM	
di Prova: UNI EN 14385:2004	Extent or authorities over returned											
admio	17/06/19 15:35	60	7,49	0,0058	0,0064	±0,0033	mg/Nm³	26/06/19-28/06/19	0,429	g/h		
admio	17/06/19 16:50	60	7,92	0,0051	0,0059	±0,0030	mg/Nm³	26/06/19-28/06/19	0,380	g/h		
admio	17/06/19 18:15	60	7,83	0,0067	0,0076	±0,0039	mg/Nm³	26/06/19-28/06/19	0,497	g/h		
admio				0,0059	0,0066		mg/Nm³		0,44	g/h		
allio	17/06/19 15:35	60	7,49	< 0,0030	< 0,0033		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
allio	17/06/19 16:50	60	7,92	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
allio	17/06/19 18:15	60	7,83	< 0,0030	< 0,0034		mg/Nm³	26/06/19-28/06/19	< 0,222	g/h		
allio				< 0,0030	< 0,0034		mg/Nm³		< 0,222	g/h		
di Prova: Calcolo												
admio + Tallio + Mercurio*	17/06/19 15:35	60	7,49	0,00580	0,0064		mg/Nm³	26/06/19-04/07/19	0,445	g/h	0,2	20
admio + Tallio + Mercurio*	17/06/19 16:50	60	7,92	0,00510	0,0059		mg/Nm³	26/06/19-04/07/19	0,445	g/h	0,2	20
admio + Tallio + Mercurio*	17/06/19 18:15	60	7,83	0,00670	0,0076		mg/Nm³	26/06/19-04/07/19	0,496	g/h	0,2	20
admio + Tallio + Mercurio*				0,00587	0,00660		mg/Nm³		0,462	g/h	0,2	20
al al al	llio lio li Prova: Calcolo dmio + Tallio + Mercurio* dmio + Tallio + Mercurio* dmio + Tallio + Mercurio*	llio 17/06/19 16:50 llio 17/06/19 16:50 llio 17/06/19 18:15 llio li Prova: Calcolo dmio + Tallio + Mercurio* 17/06/19 15:35 dmio + Tallio + Mercurio* 17/06/19 16:50 dmio + Tallio + Mercurio* 17/06/19 18:15	llio 17/06/19 16:50 60 llio 17/06/19 18:15 60 llio 17/06/19 18:15 60 llio 17/06/19 18:15 60 dmio + Tallio + Mercurio* 17/06/19 16:50 60 dmio + Tallio + Mercurio* 17/06/19 18:15 60	llio 17/06/19 16:50 60 7,92 llio 17/06/19 18:15 60 7,83 llio 17/06/19 18:15 60 7,83 llio lli Prova: Calcolo dmio + Tallio + Mercurio* 17/06/19 15:35 60 7,49 dmio + Tallio + Mercurio* 17/06/19 16:50 60 7,92 dmio + Tallio + Mercurio* 17/06/19 18:15 60 7,83	llio 17/06/19 16:50 60 7,92 < 0,0030 llio 17/06/19 18:15 60 7,83 < 0,0030 llio < 0,0030 llio < 0,0030 llio < 0,0030 dlio	llio 17/06/19 16:50 60 7,92 < 0,0030 < 0,0034 llio 17/06/19 18:15 60 7,83 < 0,0030 < 0,0034 llio < 0,0030 < 0,0034 llio < 0,0030 < 0,0034 li Prova: Calcolo dmio + Tallio + Mercurio* 17/06/19 16:50 60 7,49 0,00580 0,0064 dmio + Tallio + Mercurio* 17/06/19 18:15 60 7,83 0,00670 0,0076	llio	llio 17/06/19 16:50 60 7,92 < 0,0030 < 0,0034 mg/Nm³ llio 17/06/19 18:15 60 7,83 < 0,0030 < 0,0034 mg/Nm³ llio < 0,0030 < 0,0034 mg/Nm³ llio < 0,0030 < 0,0034 mg/Nm³ lli Prova: Calcolo dmio + Tallio + Mercurio* 17/06/19 15:35 60 7,49 0,00580 0,0064 mg/Nm³ dmio + Tallio + Mercurio* 17/06/19 16:50 60 7,82 0,00510 0,0059 mg/Nm³ dmio + Tallio + Mercurio* 17/06/19 18:15 60 7,83 0,00670 0,0076 mg/Nm³	llio 17/06/19 16:50 60 7,92 < 0,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 llio 17/06/19 18:15 60 7,83 < 0,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 llio c 0,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 llio mg/Nm³ Calcolo dmio + Tallio + Mercurio* 17/06/19 15:35 60 7,49 0,00580 0,0064 mg/Nm³ 26/06/19-04/07/19 dmio + Tallio + Mercurio* 17/06/19 16:50 60 7,92 0,00510 0,0059 mg/Nm³ 26/06/19-04/07/19 dmio + Tallio + Mercurio* 17/06/19 18:15 60 7,83 0,00670 0,0076 mg/Nm³ 26/06/19-04/07/19	llio 17/06/19 16:50 60 7,92 < 0,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 llio 17/06/19 18:15 60 7,83 < 0,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 llio c 0,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 llio mg/Nm³ 26/06/19-04/07/19 0,445 li Prova: Calcolo dmio + Tallio + Mercurio* 17/06/19 16:50 60 7,92 0,00510 0,0059 mg/Nm³ 26/06/19-04/07/19 0,445 dmio + Tallio + Mercurio* 17/06/19 18:15 60 7,83 0,00670 0,0076 mg/Nm³ 26/06/19-04/07/19 0,496	llio	llio 17/06/19 16:50 60 7,92 < 0,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 g/h llio 17/06/19 18:15 60 7,83 < 0,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 g/h llio 40,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 g/h llio 40,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 g/h llio 40,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 g/h llio 40,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 g/h llio 40,0030 < 0,0034 mg/Nm³ 26/06/19-28/06/19 < 0,222 g/h llio 40,0030 < 0,0034 mg/Nm³ 26/06/19-04/07/19 0,445 g/h 0,2 dmio + Tallio + Mercurio* 17/06/19 16:50 60 7,92 0,00510 0,0059 mg/Nm³ 26/06/19-04/07/19 0,445 g/h 0,2 dmio + Tallio + Mercurio* 17/06/19 18:15 60 7,83 0,00670 0,0076 mg/Nm³ 26/06/19-04/07/19 0,496 g/h 0,2

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

RAPPORTO DI PROVA N. 13472 / 19

NOTE

FM: Flusso di massa

Foglio 6 di 6

C: Concentrazione

UM: Unità di Misura

IM: Incertezza di misura

'< n', ove non diversamente specificato, indica un valore inferiore al limite di quantificazione (LOQ)

I dati inferiori al LOQ vengono inclusi nel calcolo delle sommatorie, ove presenti e ove non diversamente indicato, utilizzando il criterio lower-bound, considerandoli tutti pari a zero, tranne il dato relativo al composto con LOQ maggiore e nel calcolo delle medie, qualora presenti, utilizzando il criterio upper-bound, considerandoli tutti pari al LOQ stesso.

(1) Valore corretto al tenore volumetrico di ossigeno di riferimento pari al 6,00 % vol.

[f] Prova eseguita in campo

Incertezza di misura (prove chimiche)

L'incertezza di misura riportata è espressa come incertezza estesa U(x);

fattore di copertura K=2;

livello di confidenza 95%

DETERMINAZIONE OSSIGENO Per la determinazione dell' ossigeno da utilizzarsi nella correzione della concentrazione al tenore volumetrico di ossigeno di riferimento (nota (1)) è stato adottato il metodo UNI EN 14789:2017.

VALORI LIMITE

Autorizzazione Unica Decreto n. 18231 del 12/10/2009 (e successivi provvedimenti, rispettivamente, di voltura [DDG n. 2209 del 24/02/2012] e di proroga [DDG n. 9053 del 22/06/2012]) - Allegato II "Piano di Monitoraggio e controllo rev3 Dicembre 2015"

n.1 allegato al Rapporto di Prova

CONFRONTO CON I LIMITI DI SPECIFICA

Il confronto dei valori analitici con i limiti di specifica viene effettuato senza considerare l'incertezza di misura

Nel monitoraggio analitico effettuato, i parametri determinati risultano presenti in concentrazione inferiore ai valori limite stabiliti nell'Autorizzazione.

Il Responsabile del Settore Emissioni/SME

Il Direttore del Laboratorio

MONA OMEO HIMIOO

PORT

Fine del Rapporto di Prova

Foglio 1 di 5

AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 SISTEMA DI GESTIONE AMBIENTALE UNI EN ISO 14001:2015 LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13472/19

DETTAGLI ANALITICI

Riferimento: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D,)

Dispositivi utilizzati per la misurazione: Micrometro digitale, tubo di Pitot (Darcy) con termocoppia tipo K, asta metrica graduata (per la misurazione della profondità e dell'angolo di swirl).

Ripetizione 1:

Diametro 1								
Numero di punti di misura/campionamento	Profondità [cm]	Temperatura [°C] [f]	DP [Pa] [f]	Velocità Flusso [m/s] [f				
1	7,10	165,10	183,10	18,05				
2	23,70	166,90	188,70	18,36				
3	47,90	168,10	167,50	17,32				
4	114,10	167,90	163,40	17,11				
5	138,30	167,30	181,70	18,03				
6	154,90	167,20	238,10	20,63				
	Media parziale:	167,08	187,08	18,25				

Diametro 2								
Numero di punti di misura/campionamento	Profondità [cm]	Temperatura [°C] [f]	DP [Pa] [f]	Velocità Flusso [m/s] [f				
1	7,10	167,30	212,80	19,51				
2	23,70	167,10	213,70	19,55				
3	47,90	166,30	201,60	18,97				
4	114,10	165,90	213,90	19,53				
5	138,30	165,60	204,30	19,08				
6	154,90	165,50	205,90	19,15				
	Media parziale:	166,28	208,70	19,30				

Ripetizione 2:

Diametro 1									
Numero di punti di misura/campionamento	Profondità [cm]	Temperatura [°C] [f]	DP [Pa] [f]	Velocità Flusso [m/s] [
1	7,10	161,70	219,20	19,68					
2	23,70	156,90	199,10	18,66					
3	47,90	155,80	206,30	18,97					
4	114,10	156,60	211,60	19,23					
5	138,30	159,30	208,70	19,16					
6	154,90	163,20	215,20	19,54					
	Media parziale:	158,92	210,02	19,21					

Foglio 2 di 5

AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 SISTEMA DI GESTIONE AMBIENTALE UNI EN ISO 14001:2015 LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA. IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13472/19

Diametro 2									
Numero di punti di misura/campionamento	Profondità [cm]	Temperatura [°C] [f]	DP [Pa] [f]	Velocità Flusso [m/s] [f					
1	7,10	163,60	213,30	19,46					
2	23,70	163,80	224,20	19,96					
3	47,90	164,20	220,50	19,80					
4	114,10	164,90	212,30	19,44					
5	138,30	164,70	203,30	19,02					
6	154,90	164,80	217,60	19,68					
	Media parziale:	164,33	215,20	19,56					

NOTE:

[f] Prova eseguita in campo.

'< n', ove non diversamente specificato, indica un valore inferiore al limite di quantificazione (LOQ).

Foglio 3 di 5

AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 SISTEMA DI GESTIONE AMBIENTALE UNI EN ISO 14001:2015

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13472/19

DETTAGLIO METODI ANALITICI E DI CAMPIONAMENTO

Riferimento: UNI EN 13284-1:2017

POLVERI TOTALI (Metodo manuale gravimetrico)

CARATTERISTICHE DEL SISTEMA DI CAMPIONAMENTO E TRATTAMENTO CAMPIONE

Diametro ugello di ingresso sonda [mm]:	6,0				
Dispositivo di misurazione della portata:	Tubo di Pitot, Micromanometro digitale, Termocoppia tipo K				
Di	ispositivo di filtrazione (filtro)				
Materiale:	Fibra di vetro				
Dimensioni:	47 mm				
Temperatura di filtrazione: 160 °C					
	Operazioni di pesatura				
Condizionamento filtri prima della pesatura:	1 h a 180 °C e raffreddamento in essiccatore per 4 h				
Condizionamento filtri post-campionamento:	1 h a 160 °C e raffreddamento in essiccatore per 4 h				
Correzione pesi apparenti:	Non necessaria				
	Controlli qualità				
Esito prova di tenuta:	Positivo				
Esito valore del bianco complessivo:	Positivo				
Esito conformità requisiti Par. 5.2	Positivo				
Esito conformità criterio isocinetico Positivo					

Identificazione della posizione di campionamento: Per la descrizione del numero e posizione dei punti di campionamento nel piano di campionamento (eseguito ai sensi della UNI EN 13284-1:2017) fare riferimento a quanto riportato nel dettaglio analitico della UNI EN ISO 16911-1:2013

N° prova	Identificazione Campione	Portata media (campionamento)	Volume campionato	Polveri su Filtro	Polveri nei Risciaqui
311		[1/min]	[m³]	[mg]	[mg]
1	19ES09848	17,17	0,863	3,50	1,02
2	19ES09843	17,21	0,845	1,97	1,02
3	19ES09802	17,17	0,839	3,77	1,02

Foglio 4 di 5

AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 SISTEMA DI GESTIONE AMBIENTALE UNI EN ISO 14001:2015 LAB Nº 0142 L

Membro degli Accordí di Mutuo Riconoscimento EA. IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13472/19

DETTAGLI ANALITICI

Riferimento: UNI EN 14385:2004 e UNI EN 13211:2003 + UNI 12846:2013

Punti e piano di campionamento: Per la descrizione del numero e posizione dei punti di campionamento nel piano di campionamento (eseguito ai sensi della UNI EN 13284-1:2003) fare riferimento a quanto riportato nel dettaglio analitico della UNI EN ISO 16911-1:2013

Tipologia campionamento:

Isocinetico

Diametro ugello:

6 mm

Caratteristiche del filtro:

Filtro in fibra di quarzo con diametro da 47 mm.

Assorbitori:

• tipologia:

Gorgogliatori per gas in vetro poroso

soluzione di assorbimento:

HNO₃ 3,3% (m/m) + H₂O₂ 1,5% (m/m) - UNI EN 14385:2003

KMnO₄ 2% + H ₂SO₄ 10% - UNI EN 13211:2003 + UNI 12846:2013

Procedimento analitico:

Iniezione diretta soluzione di assorbimento tal quale. Metodo analitico ICP-OES – UNI EN 14385:2003 Iniezione in flusso, agente di riduzione soluzione Stagno cloruro (II). Metodo analitico CVAAS – UNI EN 13211:2003 + UNI 12846:2013

Volume campionato Metalli Volume campionato Mercuri	: 0,8810 Nm³ - Velocità medi						
	R	Risultati Campione (concentrazione)					
Parametri	LOQ (mg/Nm³)	3° Assorbitore (mg)	Conc. % (3° ass. / con. tot. ass.)	Concentrazione di bianco di campo (mg)			
Mercurio	< 0,006	0,00000	n,a.	0,00000			
Arsenico	< 0,0030	-0,00110	n.a.	-0,00042			
Cadmio	< 0,0030	-0,00005	< 10	0,00010			
Cobalto	< 0,0030	0,00101	n.a.	0,00004			
Cromo totale	< 0,0030	0,00033	n.a.	0,00012			
Manganese	< 0,0030	0,00025	< 10	-0,00006			
Nichel	< 0,0030	0,00001	n.a.	-0,00004			
Piombo	< 0,0030	-0,00051	п.а.	-0,00016			
Stagno	< 0,0030	-0,00026	n.a.	-0,00012			
Tallio Tallio	< 0,0030	0,00003	n.a.	-0,00016			
/anadio	< 0,0030	0,00006	n.a.	0,00006			
Antimonio	< 0,0030	-0,00098	n.a.	0,00004			
Rame	< 0,0030	0,00077	> 10	0,00014			

 $n.a.: non\ applicabile\ conc. \le LOQ$

Concentrazione bianco Σ Metalli (mg/Nm³):

0,00057

Rapporto (%) bianco / Limite:

< 10

Foglio 5 di 5

AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 SISTEMA DI GESTIONE AMBIENTALE UNI EN ISO 14001:2015 LAB N° 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13472/19

Volume campionato Metalli Volume campionato Mercuri	i: 0,9786 Nm³ - Velocità med						
	R	Risultati Campione (concentrazione)					
Parametri	LOQ (mg/Nm³)	3° Assorbitore (mg)	Conc. % (3° ass. / con. tot. ass.)	Concentrazione di bianco di campo (mg)			
Mercurio	< 0,006	0,00005	n.a.	0,00000			
Arsenico	< 0,0030	-0,00091	n.a.	-0,00042			
Cadmio	< 0,0030	0,00159	> 10	0,00010			
Cobalto	< 0,0030	0,00117	n.a.	0,00004			
Cromo totale	< 0,0030	0,00010	n,a.	0,00012			
Manganese	< 0,0030	-0,00016	< 10	-0,00006			
Nichel	< 0,0030	-0,00001	n,a.	-0,00004			
Piombo	< 0,0030	0,00000	n,a.	-0,00016			
Stagno	< 0,0030	-0,00024	n,a.	-0,00012			
Tallio	< 0,0030	0,00077	n.a.	-0,00016			
Vanadio	< 0,0030	0,00015	n,a.	0,00006			
Antimonio	< 0,0030	-0,00015	n,a.	0,00004			
Rame	< 0,0030	-0,00005	n,a,	0,00014			

n.a.: non applicabile conc. < LOQ

Concentrazione bianco ∑ Metalli (mg/Nm³):

0,00051

Rapporto (%) bianco / Limite:

< 10

3º Campionamento

Volume campionato Metalli: 0,9839 Nm3 - Velocità media nel condotto: 19,63 m/s - Grado di isocinetismo: 0,87 % Volume campionato Mercurio: 0,1356 Nm3 - Velocità media nel condotto: 19,63 m/s - Grado di isocinetismo: 1,00 %

	R	tisultati Campione (conc	Risultati Bianchi	
Parametri	LOQ (mg/Nm³)	3° Assorbitore (mg)	Conc. % (3° ass. / con. tot. ass.)	Concentrazione di bianco di campo (mg)
Mercurio	< 0,006	0,00000	n.a.	0,00000
Arsenico	< 0,0030	-0,00076	n.a.	-0,00042
Cadmio	< 0,0030	0,00073	> 10	. 0,00010
Cobalto	< 0,0030	0,00032	n.a.	0,00004
Cromo totale	< 0,0030	0,00018	< 10	0,00012
Manganese	< 0,0030	-0,00005	< 10	-0,0006
Nichel	< 0,0030	-0,00008	n.a.	-0,00004
Piombo	< 0,0030	-0,00013	n.a.	-0,00016
Stagno	< 0,0030	-0,00025	n.a.	-0,00012
Tallio	< 0,0030	0,00024	n.a.	-0,00016
√anadio	< 0,0030	0,00001	n.a.	0,00006
Antimonio	< 0,0030	0,00100	n.a.	0,00004
Rame	< 0,0030	-0,00012	n,a,	0,00014

n.a.: non applicabile conc. < LOQ

Concentrazione bianco ∑ Metalli (mg/Nm³):

0,00051

Rapporto (%) bianco / Limite:

A MOSA

< 10

Il Responsabile del Settore Emissioni/SME

Il presente allegato al Rapporto di prova riguarda solo il campione oggetto di analisi e non deve essere riprodotto parzialmente senza l'approvazione scritta del

Sede centrale e legale Via Custoza, 31 - 66100 Chieti (CH) | Tel. +39 0871 564 343 | Fax +39 0871 564 443 | mail@laserlab.it | www.laserlab.it Laserlab S.r.l. Unipersonale, Società soggetta a Direzione e Coordinamento da parte di LabAnalysis Group S.r.l. Cap. Soc. €100.000,00 int. vers. Registro Imprese di Chieti C.F. / P.I. 01532600697 R.E.A. CCIAA di Chieti n. 94054

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and TI AC Mutual Recognition Agreements

Siomasse Crotone S.p.A. a socio unico

Serv. Sicurezza, Salute, Ambiente e Qualità

SS 106 Zona Industriale - 88900 - Crotone KR

P. IVA 03200440794 Cod. Fisc.: 03200440794

Biomasse Crotone S.p.A. a socio unico

Questo Rapporto di Prova riguarda solo il campione sottoposto a prova così come ricevuto. Non può essere riprodotto parzialmente salvo l'approvazione scritta del Laboratorio

Le prove contrassegnate da asterisco non sono accreditate Accredia

Foglio 1 di 6

Chieti, li 19/07/2019

Protocolle p Destinatario

RAPPORTO DI PROVA N. 13471 / 19

Tipo di campione

: EMISSIONE ATMOSFERICA

Committente

BIOMASSE CROTONE S.p.A.

S.S. 106 Zona Ind.le - Loc. Passovecchio

88900 CROTONE (KR)

Insediam, analizzato

: BIOMASSE CROTONE S.p.A.

S.S. 106 Zona Ind.le - Loc. Passovecchio

88900 CROTONE (KR)

Campionato da

: NOSTRO TECNICO

Data di inizio prelievo Data di ricevimento

: 18/06/2019 25/06/2019

Temperatura all'arrivo

Campione refrigerato

Rif. campione

57433/1

Tecnici campionatori

: Domenico Tricarico, Saverio Vito

DESCRIZIONE DEL PUNTO DI EMISSIONE:

Punto di emissione

: E2

Coordinate GPS

Provenienza

Caldaia linea 2

Altezza del camino (da quota suolo) (m)

: N: 39°5'55" 17°4'35"

Altezza del punto di prelievo (da quota suolo) (m)

: 50,00 : 21,00

Sistema di abbattimento

: Impianto di dosaggio SNCR, Impianto dosaggio bicarbonato, Precipitatore

elettrostatico.

Condizioni operative

Il campionamento è stato eseguito, come definito dalla Committente, nelle

più gravose condizioni di esercizio.

Piano di misurazione

Norme di riferimento

del 13/06/2019 nº 122844 Pacchetto 9

Combustibile utilizzato

: Biomasse solide

SCELTA DEL PUNTO DI MISURA:

: UNI EN 15259:2008

Condizioni effettive di prelievo

: 2

: Numero di flange di campionamento

:> 5 diametri idraulici

Lunghezza tratto rettilineo a monte delle flange Lunghezza tratto rettilineo a valle delle flange

:> 5 diametri idraulici

CONDIZIONI DI NORMALIZZAZIONE:

Temperatura : 273,15 K Pressione

:101,3 kPa

: secco

Tenore ossigeno di riferimento (nell'effluente gassoso secco) : 6,00 %vol.

LAB Nº 0142 I

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Foglio 2 di 6

RAPPORTO DI PROVA N. 13471 / 19

RISULTATI ANALITICI

CARATTERISTICHE GEOMETRICHE

DATI AMBIENTALI

Direzione flusso allo sbocco : Verticale Geometria sezione di prelievo : Circolare

Pressione (ambiente) (Pa)

 101120 ± 990

Temperatura (ambiente) (°C) 30,00

Dimensione sezione di prelievo (m): 1,62 Area della sezione di prelievo (m²) : 2,0612

Parametro	UM	1000		1 IVIIS	ura	
	UNI	Data/ora	inizio	Durata (min)	Risultato	IM
Metodo di Prova: UNI EN 14790:2017						
Contenuto di vapor d'acqua del gas umido [f] Metodo di Prova: UNI EN 14789:2017	% v/v	18/06/19	9:50	30	19,8	± 2,8
Ossigeno (O ₂) [f] Metodo di Prova: ISO 12039:2001 (escluso il punto 7.3, 7.4, 7.5)	vol. %	18/06/19	9:50	30	8,10	± 0,81
Biossido di carbonio (CO ₂) [f] Metodo di Prova: Calcolo	% v/v	18/06/19	9:50	30	12,53	± 1,88
Azoto (N ₂)* Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E)	%	18/06/19	9:50	30	59,6	
Massa molare media del gas umido*	kg/kmol	18/06/19	9:50	12	27,888	± 0,050
Densità del gas umido*	Kg/m³	18/06/19	9:50	12	0,784	± 0,011
Temperatura (gas) [f]	°C	18/06/19	9:50	12	158,9	± 1,6
Pressione (dinamica differenziale media) [f]	Pa	18/06/19	9:50	12	203	± 20
Pressione (assoluta gas) [f]	Pa	18/06/19	9:50	12	100970	± 990
Fattore di taratura del tubo di Pitot [f]*		18/06/19	9:50	12	0.835	
Wall effect*		18/06/19	9:50	12	0,995	
Velocità (media del flusso) [f]	m/s	18/06/19	9:50	12	19,0	± 1,2
Portata (volumica del flusso)	m³/h	18/06/19	9:50	12	141000	± 16000
Portata (volumica del flusso normalizzata)	Nm³/h	18/06/19	9:50	12	88800	± 9900
Portata (volumica del flusso normalizzata secca)	Nm³/h	18/06/19	9:50	12	71200	± 7900
Portata (normalizzata secca corretta per l'ossigeno di riferimento)	Nm³/h	18/06/19	9:50	12	61300	± 8400
Portata Limite	Nm³/h				1000000	
Parametro	UM	THE PERSON		2º Misu	ra	38.
	OM	Data/ora	inizio 1	Durata (min)	Risultato	IM
Metodo di Prova: UNI EN 14790:2017			Palacol			
Contenuto di vapor d'acqua del gas umido [f] Metodo di Prova: UNI EN 14789:2017	% v/v	18/06/19	13:25	30	19,8	± 2,8
Ossigeno (O ₂) [f]	vol. %	18/06/19	13:25	30	8,20	± 0,82
Metodo di Prova: ISO 12039:2001 (escluso il punto 7.3, 7.4, 7.5)						
Biossido di carbonio (CO ₂) [f] Metodo di Prova: Calcolo	% v/v	18/06/19	13:25	30	12,40	± 1,86
A4- (NI)*					FO 0	
	%	18/06/19	13:25	30	59,6	
	%	18/06/19	13:25		59,6	
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E)	kg/kmol	18/06/19	13:25	12	27,874	± 0,050
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido*	kg/kmol		13:25			± 0,050 ± 0,011
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f]	kg/kmol	18/06/19	13:25 13:25	12	27,874	-
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f]	kg/kmol Kg/m³	18/06/19 18/06/19	13:25 13:25 13:25	12 12	27,874 0,773	± 0,011
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f] Pressione (dinamica differenziale media) [f]	kg/kmol Kg/m³ °C	18/06/19 18/06/19 18/06/19	13:25 13:25 13:25 13:25	12 12 12	27,874 0,773 164,3	± 0,011 ± 1,6
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f] Pressione (dinamica differenziale media) [f] Pressione (assoluta gas) [f]	kg/kmol Kg/m³ °C Pa	18/06/19 18/06/19 18/06/19 18/06/19	13:25 13:25 13:25 13:25 13:25	12 12 12 12	27,874 0,773 164,3 192	± 0,011 ± 1,6 ± 19
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f] Pressione (dinamica differenziale media) [f] Pressione (assoluta gas) [f] Fattore di taratura del tubo di Pitot [f]*	kg/kmol Kg/m³ °C Pa	18/06/19 18/06/19 18/06/19 18/06/19	13:25 13:25 13:25 13:25 13:25 13:25	12 12 12 12 12	27,874 0,773 164,3 192 100860	± 0,011 ± 1,6 ± 19
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f] Pressione (dinamica differenziale media) [f] Pressione (assoluta gas) [f] Fattore di taratura del tubo di Pitot [f]* Nall effect*	kg/kmol Kg/m³ °C Pa Pa	18/06/19 18/06/19 18/06/19 18/06/19 18/06/19	13:25 13:25 13:25 13:25 13:25 13:25 13:25	12 12 12 12 12 12	27,874 0,773 164,3 192 100860 0,835	± 0,011 ± 1,6 ± 19
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f] Pressione (dinamica differenziale media) [f] Pressione (assoluta gas) [f] Fattore di taratura del tubo di Pitot [f]* Wall effect* Velocità (media del flusso) [f]	kg/kmol Kg/m³ °C Pa Pa m/s	18/06/19 18/06/19 18/06/19 18/06/19 18/06/19 18/06/19 18/06/19	13:25 13:25 13:25 13:25 13:25 13:25 13:25	12 12 12 12 12 12 12	27,874 0,773 164,3 192 100860 0,835 0,995	± 0,011 ± 1,6 ± 19 ± 990
Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f] Pressione (dinamica differenziale media) [f] Pressione (assoluta gas) [f] Fattore di taratura del tubo di Pitot [f]* Wall effect* Velocità (media del flusso) [f]	kg/kmol Kg/m³ °C Pa Pa m/s	18/06/19 18/	13:25 13:25 13:25 13:25 13:25 13:25 13:25 13:25	12 12 12 12 12 12 12 12	27,874 0,773 164,3 192 100860 0,835 0,995 18,6	± 0,011 ± 1,6 ± 19 ± 990
Azoto (N ₂)* Metodo di Prova: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D, E) Massa molare media del gas umido* Densità del gas umido* Temperatura (gas) [f] Pressione (dinamica differenziale media) [f] Pressione (assoluta gas) [f] Fattore di taratura del tubo di Pitot [f]* Wall effect* Velocità (media del flusso) [f] Portata (volumica del flusso normalizzata) Portata (volumica del flusso normalizzata secca)	kg/kmol Kg/m³ °C Pa Pa m/s m³/h	18/06/19 18/06/19 18/06/19 18/06/19 18/06/19 18/06/19 18/06/19 18/06/19	13:25 13:25 13:25 13:25 13:25 13:25 13:25 13:25 13:25	12 12 12 12 12 12 12 12 12	27,874 0,773 164,3 192 100860 0,835 0,995 18,6 138000	± 0,011 ± 1,6 ± 19 ± 990 ± 1,2 ± 15000

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Foglio 3 di 6

Portata Limite

RAPPORTO DI PROVA N. 13471 / 19

Nm³/h

1000000

Repl.	Parametro	Data/ora inizio	Durata	Ossigeno	Concentra	zione (C)	IM	UM	Data inizio/fine	Flusso di massa	UM	Lin	nite
13		prelievo	(min)	(%)	rilevata	corretta (1)		A Y	analisi	(FM)		С	FM
Meto	do di Prova: UNI EN 13284-1:2017												
1°	Polveri	18/06/19 10:09	60	8,36	0,88	1,05	±0,54	mg/Nm³	05/07/19-05/07/19	62,7	g/h	30	30000
2°	Polveri	18/06/19 11:17	60	8,44	0,50	0,60	±0,31	mg/Nm³	05/07/19-05/07/19	35,8	g/h	30	30000
3°	Polveri	18/06/19 12:24	60	8,62	0,75	0,90	±0,46	mg/Nm³	05/07/19-05/07/19	51,3	g/h	30	30000
Media	Polveri				0,71	0,85		mg/Nm³		49,9	g/h	30	30000
Metoc	do di Prova: UNI EN 14791:2017 Metodo	A											
1*	Diossido di zolfo (SO ₂)	18/06/19 10:09	60	8,36	5,7	6,8	±2,0	mg/Nm³	05/07/19-09/07/19	407	g/h	200	200000
2°	Diossido di zolfo (SO ₂)	18/06/19 11:17	60	8,44	3,09	3,7	±1,1	mg/Nm³	05/07/19-09/07/19	220	g/h	200	200000
3°	Diossido di zolfo (SO ₂)	18/06/19 12:24	60	8,62	1,33	1,61	±0,47	mg/Nm³	05/07/19-09/07/19	91,4	g/h	200	200000
Media	Diossido di zolfo (SO ₂)				3,37	4,0		mg/Nm³		239	g/h	200	200000
	lo di Prova: UNI EN 14792:2017												
1°	Ossidi di azoto (NOx) (come NO ₂) [f]	18/06/19 12:00	60	8,52	212	255	±16	mg/Nm³	18/06/19-18/06/19	14600	g/h	300	300000
2°	Ossidi di azoto (NOx) (come NO ₂) [f]	18/06/19 13:00	60	8,54	199	240	±15	mg/Nm³	18/06/19-18/06/19	13700	g/h	300	300000
3°	Ossidi di azoto (NOx) (come NO ₂) [f]	18/06/19 14:00	60	8,52	225	270	±17	mg/Nm³	18/06/19-18/06/19	15400	g/h	300	300000
Vledia	Ossidi di azoto (NOx) (come NO ₂) [f]				212	255		mg/Nm³		14600	g/h	300	300000
	lo di Prova: UNI EN 15058:2017												
1°	Monossido di carbonio (CO) [f]	18/06/19 12:00	60	8,52	26,51	31,87	±0,46	mg/Nm³	18/06/19-18/06/19	1820	g/h	100	100000
2°	Monossido di carbonio (CO) [f]	18/06/19 13:00	60	8,54	37,02	44,58	±0,65	mg/Nm³	18/06/19-18/06/19	2550	g/h	100	100000
3°	Monossido di carbonio (CO) [f]	18/06/19 14:00	60	8,52	25,07	30,13	±0,44	mg/Nm³	18/06/19-18/06/19	1720	g/h	100	100000
vledia	Monossido di carbonio (CO) [f]				29,53	35,53		mg/Nm³		2030	g/h	100	100000
	lo di Prova: UNI EN 1911;2010 metodo C												
1 (Cloruri espressi come HCI	18/06/19 10:09	60	8,36	8,3	9,8	±3,3	mg/Nm³	05/07/19-09/07/19	590	g/h	30	30000
2° (Cloruri espressi come HCl	18/06/19 11:17	60	8,44	3,3	3,9	±1,3	mg/Nm³	05/07/19-09/07/19	235	g/h	30	30000
3° (Cloruri espressi come HCl	18/06/19 12:24	60	8,62	0,65	0,79	±0,26	mg/Nm³	05/07/19-09/07/19	44,7	g/h	30	30000
	Cloruri espressi come HCI				4,1	4,8		mg/Nm³		290	g/h	30	30000
	o di Prova: UNI EN 12619:2013							-					
1" (Carbonio Organico Totale (COT) [f]	18/06/19 12:00	60	8,52	< 0,50	< 0,6	1	mgC/Nm³	18/06/19-18/06/19	< 34,4	g/h	20	20000
	Carbonio Organico Totale (COT) [f]	18/06/19 13:00	60	8,54	< 0,50	< 0,6		mgC/Nm³	18/06/19-18/06/19	< 34,4	g/h	20	20000
3° (Carbonio Organico Totale (COT) [f]	18/06/19 14:00	60	8,52	0,5	0,6	±1,8	mgC/Nm³	18/06/19-18/06/19	36,9	g/h	20	20000
	Carbonio Organico Totale (COT) [f]				0,5	0,6		mgC/Nm³		35,2	g/h	20	20000
	o di Prova: Calcolo					,		Ü					
	Sb+Pb+Cr+Cu+Mn+V+Sn*	18/06/19 13:31	60	8,31	0,00710	0,0083		mg/Nm³ 2	26/06/19-28/06/19	0,488	g/h	5	5000
	Sb+Pb+Cr+Cu+Mn+V+Sn*	18/06/19 14:44	60	8,67	0,00340	0,0041		mg/Nm³ 2	26/06/19-28/06/19	0,234	g/h	5	5000
3° 5	Sb+Pb+Cr+Cu+Mn+V+Sn*	18/06/19 15:53	60	8,74	0,00530	0,0065		mg/Nm³ 2	26/06/19-28/06/19	0,365	g/h	5	5000
	Sb+Pb+Cr+Cu+Mn+V+Sn*				0,00527	0,00630		mg/Nm³		0,362	g/h	5	5000
	o di Prova: UNI EN 13211:2003 + UNI 12	2846:2013				,							
	Mercurio	18/06/19 13:31	60	8,31	< 0,0060	< 0,0071		mg/Nm³ (03/07/19-04/07/19	< 0,413	g/h		
	Vercurio	18/06/19 14:44	60	8,67	< 0,0060	< 0,0073		mg/Nm³ (33/07/19-04/07/19	< 0,413	g/h		
	Mercurio	18/06/19 15:53	60	8,74	< 0,0060	< 0,0073		mg/Nm³ (03/07/19-04/07/19	< 0,413	g/h		
					,			5					

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Foglio 4 di 6

RAPPORTO DI PROVA N. 13471 / 19

Repl.	Parametro	inizio		Ossigeno	Concentra	13.75	IM	UM	inizio/fine	Flusso di massa	UM		Limit	
		prelievo	(min)	(%)	rilevata	corretta (¹)		100	analisi	(FM)		C		FM
Meto	do di Prova: UNI EN 14385:2004	10/00/10 10 01	-00	0.04	- 0 0000	- 0.0005			00/00/10 00/00/140	< 0,206	//			
2°	Antimonio	18/06/19 13:31	60	8,31	< 0,0030	< 0,0035		•	26/06/19-28/06/19		g/h			
3°	Antimonio	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		_	26/06/19-28/06/19		g/h			
	Antimonio	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037		-	26/06/19-28/06/19	< 0,206	g/h			
	Antimonio	10/00/10 10 01		0.04	< 0,0030	< 0,0036		mg/Nm³			g/h			4000
1"	Arsenico	18/06/19 13:31	60	8,31	< 0,0030	< 0,0035		•	26/06/19-28/06/19		g/h	1		1000
2°	Arsenico	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		_	26/06/19-28/06/19		g/h	1		1000
3°	Arsenico	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037		•	26/06/19-28/06/19		g/h -	1		1000
	Arsenico				< 0,0030	< 0,0036	40.0000	mg/Nm³		< 0,208	g/h	1		1000
1°	Cobalto	18/06/19 13:31	60	8,31	0,0048	0,0056	±0,0028	•	26/06/19-28/06/19		g/h	1		1000
2°	Cobalto	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		-	26/06/19-28/06/19		g/h	1		1000
3°	Cobalto	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037			26/06/19-28/06/19		g/h	1		1000
	Cobalto				0,0036	0,0043		mg/Nm³		0,25	g/h	1		1000
1°	Cromo totale	18/06/19 13:31	60	8,31	0,0031	0,0036	±0,0020	_	26/06/19-28/06/19		g/h			
2°	Cromo totale	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		mg/Nm³	26/06/19-28/06/19		g/h			
3°	Cromo totale	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037		mg/Nm³	26/06/19-28/06/19		g/h			
	Cromo totale				0,0030	0,0036		mg/Nm³		0,21	g/h			
1°	Manganese	18/06/19 13:31	60	8,31	0,0040	0,0047	±0,0026	mg/Nm³	26/06/19-28/06/19	0,276	g/h			
2°	Manganese	18/06/19 14:44	60	8,67	0,0034	0,0041	±0,0022	mg/Nm ^a	26/06/19-28/06/19	0,231	g/h			
3°	Manganese	18/06/19 15:53	60	8,74	0,0053	0,0065	±0,0035	mg/Nm³	26/06/19-28/06/19	0,363	g/h			
Media	Manganese				0,0042	0,0051		mg/Nm³		0,29	g/h			
1°	Nichel	18/06/19 13:31	60	8,31	< 0,0030	< 0,0035		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h	1		1000
2°	Nichel	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h	1		1000
3°	Nichel	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h	1		1000
Media	Nichel				< 0,0030	< 0,0036		mg/Nm³		< 0,206	g/h	1		1000
1°	Piombo	18/06/19 13:31	60	8,31	< 0,0030	< 0,0035		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
2°	Piombo	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
	Piombo	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
Vledia	Piombo				< 0,0030	< 0,0036		mg/Nm³		< 0,206	g/h			
1°	Rame	18/06/19 13:31	60	8,31	< 0,0030	< 0,0035		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
2°	Rame	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
3°	Rame	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
dedia	Rame				< 0,0030	< 0,0036		mg/Nm³		< 0,206	g/h			
14	Stagno*	18/06/19 13:31	60	8,31	< 0,0030	< 0,0035		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
2°	Stagno*	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
3°	Stagno*	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
/ledia	Stagno*				< 0,0030	< 0,0036		mg/Nm³		< 0,208	g/h			
1°	Vanadio	18/06/19 13:31	60	8,31	< 0,0030	< 0,0035		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
2°	Vanadio	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		mg/Nm³	26/06/19-28/06/19	< 0,208	g/h			
3°	Vanadio	18/06/19 15:53	60	8,74	< 0,0030	< 0,0037		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h			
/ledia	Vanadio				< 0,0030	< 0,0036		mg/Nm³		< 0,208	g/h			

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA. IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Foglio 5 di 6

RAPPORTO DI PROVA N. 13471 / 19

Repl.	Parametro	Data/ora inizio	Durata	Ossigeno	Concentra	zione (C)	IM	UM	Data inizio/fine	Flusso di massa	UM	Lin	nite
		prelievo	(min)	(%)	rilevata	corretta (1)		161	analisi	(FM)		С	FM
Meto	do di Prova: UNI EN 14385:2004												
1°	Cadmio	18/06/19 13:31	60	8,31	0,0038	0,0044	±0,0022	mg/Nm³	26/06/19-28/06/19	0,258	g/h		
2°	Cadmio	18/06/19 14:44	60	8,67	0,0079	0,0096	±0,0048	mg/Nm³	26/06/19-28/06/19	0,541	g/h		
3°	Cadmio	18/06/19 15:53	60	8,74	0,0034	0,0041	±0,0021	mg/Nm³	26/06/19-28/06/19	0,231	g/h		
Media	Cadmio				0,0050	0,0060		mg/Nm³		0,34	g/h		
1*	Tallio	18/06/19 13:31	60	8,31	< 0,0030	< 0,0035		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h		
2°	Tallio	18/06/19 14:44	60	8,67	< 0,0030	< 0,0036		mg/Nm³	26/06/19-28/06/19	< 0,206	g/h		
3*	Tallio	18/06/19 15:53	60	8,74	0,0031	0,0038	±0,0022	mg/Nm³	26/06/19-28/06/19	0,213	g/h		
Media	Tallio				0,0030	0,0036		mg/Nm³		0,21	g/h		
Meto	do di Prova: Calcolo												
1"	Cadmio + Tallio + Mercurio*	18/06/19 13:31	60	8,31	0,00380	0,0044		mg/Nm³	26/06/19-04/07/19	0,413	g/h	0,2	200
2°	Cadmio + Tallio + Mercurio*	18/06/19 14:44	60	8,67	0,00790	0,0096		mg/Nm³	26/06/19-04/07/19	0,544	g/h	0,2	200
3°	Cadmio + Tallio + Mercurio*	18/06/19 15:53	60	8,74	0,00650	0,0079		mg/Nm³	26/06/19-04/07/19	0,447	g/h	0,2	200
Media	Cadmio + Tallio + Mercurio*				0,00607	0,00730		mg/Nm³		0,468	g/h	0,2	200

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

RAPPORTO DI PROVA N. 13471 / 19

Foglio 6 di 6

NOTE

FM: Flusso di massa

C: Concentrazione

UM: Unità di Misura

IM: Incertezza di misura

'< n', ove non diversamente specificato, indica un valore inferiore al limite di quantificazione (LOQ)

I dati inferiori al LOQ vengono inclusi nel calcolo delle sommatorie, ove presenti e ove non diversamente indicato, utilizzando il criterio lower-bound, considerandoli tutti pari a zero, tranne il dato relativo al composto con LOQ maggiore e nel calcolo delle medie, qualora presenti, utilizzando il criterio upper-bound, considerandoli tutti pari al LOQ stesso.

(1) Valore corretto al tenore volumetrico di ossigeno di riferimento pari al 6,00 % vol.

[f] Prova eseguita in campo

Incertezza di misura (prove chimiche)

L'incertezza di misura riportata è espressa come incertezza estesa U(x);

fattore di copertura K=2;

livello di confidenza 95%

DETERMINAZIONE OSSIGENO Per la determinazione dell' ossigeno da utilizzarsi nella correzione della concentrazione al tenore volumetrico di ossigeno di riferimento (nota (1)) è stato adottato il metodo UNI EN 14789:2017.

VALORI LIMITE

Autorizzazione Unica Decreto n. 18231 del 12/10/2009 (e successivi provvedimenti, rispettivamente, di voltura [DDG n. 2209 del 24/02/2012] e di proroga [DDG n. 9053 del 22/06/2012]) - Allegato II "Piano di Monitoraggio e controllo rev3 Dicembre 2015"

n.1 allegato al Rapporto di Prova

CONFRONTO CON I LIMITI DI SPECIFICA

Il confronto dei valori analitici con i limiti di specifica viene effettuato senza considerare l'incertezza di misura

Nel monitoraggio analitico effettuato, i parametri determinati risultano presenti in concentrazione inferiore ai valori limite stabiliti nell'Autorizzazione.

Il Responsabile del Settore Emissioni/SME

Il Direttore del Vaboratorio

CHIMIC

A MONT

Fine del Rapporto di Prova

Foglio 1 di 5

AZIENDA CON
SISTEMA DI GESTIONE QUALITÀ
UNI EN ISO 9001:2015
SISTEMA DI GESTIONE AMBIENTALE
UNI EN ISO 14001:2015

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13471/19

DETTAGLI ANALITICI

Riferimento: UNI EN ISO 16911-1:2013 (escluso Annex B, C, D,)

Dispositivi utilizzati per la misurazione: Micrometro digitale, tubo di Pitot (Darcy) con termocoppia tipo K, asta metrica graduata (per la misurazione della profondità e dell'angolo di swirl).

Ripetizione 1:

Diametro 1							
Numero di punti di misura/campionamento	Profondità [cm]	Temperatura [°C] [f]	DP [Pa] [f]	Velocità Flusso [m/s] [
1	7,10	159,50	252,40	21,20			
2	23,70	158,80	238,80	20,61			
3	47,90	158,80	193,30	18,54			
4	114,10	158,40	187,70	18,26			
5	138,30	158,40	179,10	17,84			
6	154,90	158,60	196,80	18,70			
	Media parziale:	158,75	208,02	19,19			

	Diametre	0 2		
Numero di punti di misura/campionamento	Profondità [cm]	Temperatura [°C] [f]	DP [Pa] [f]	Velocità Flusso [m/s] [f
1	7,10	158,70	178,60	17,82
2	23,70	158,70	190,90	18,42
3	47,90	159,20	204,20	19,07
4	114,10	159,20	198,60	18,80
5	138,30	159,30	201,50	18,94
6	154,90	159,20	209,20	19,30
	Media parziale:	159,05	197,17	18,73

Ripetizione 2:

Diametro 1						
Numero di punti di misura/campionamento	Profondità [cm]	Temperatura [°C] [f]	DP [Pa] [f]	Velocità Flusso [m/s] [f		
1	7,10	161,40	176,40	17,78		
2	23,70	162,80	199,50	18,94		
3	47,90	163,10	203,30	19,12		
4	114,10	163,70	198,30	18,90		
5	138,30	164,30	185,90	18,31		
6	154,90	165,20	181,70	18,12		
	Media parziale:	163,42	190,85	18,53		

LAB N° 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13471/19

Diametro 2							
Numero di punti di misura/campionamento	Profondità [cm]	Temperatura [°C] [f]	DP [Pa] [f]	Velocità Flusso [m/s] [f			
1	7,10	165,70	192,40	18,66			
2	23,70	165,20	183,70	18,22			
3	47,90	164,90	201,10	19,06			
4	114,10	165,30	193,40	18,70			
5	138,30	165,10	198,20	18,93			
6	154,90	165,40	192,40	18,65			
	Media parziale:	165,27	193,53	18,70			

NOTE:

[f] Prova eseguita in campo.

'< n', ove non diversamente specificato, indica un valore inferiore al limite di quantificazione (LOQ).

Foglio 3 di 5

AZIENDA CON
SISTEMA DI GESTIONE QUALITÀ
UNI EN ISO 9001:2015
SISTEMA DI GESTIONE AMBIENTALE
INII EN ISO 14001:2015

LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA. IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13471/19

DETTAGLIO METODI ANALITICI E DI CAMPIONAMENTO

Riferimento: UNI EN 13284-1:2017

POLVERI TOTALI (Metodo manuale gravimetrico)

CARATTERISTICHE DEL SISTEMA DI CAMPIONAMENTO E TRATTAMENTO CAMPIONE

Diametro ugello di ingresso sonda [mm]:	6,0			
Dispositivo di misurazione della portata:	Tubo di Pitot, Micromanometro digitale, Termocoppia tipo K			
D	rispositivo di filtrazione (filtro)			
Materiale:	Fibra di vetro			
Dimensioni:	47 mm			
emperatura di filtrazione: 160 °C				
	Operazioni di pesatura			
Condizionamento filtri prima della pesatura:	onamento filtri prima della pesatura: 1 h a 180 °C e raffreddamento in essiccatore per 4 h			
Condizionamento filtri post-campionamento:	1 h a 160 °C e raffreddamento in essiccatore per 4 h			
Correzione pesi apparenti:	Non necessaria			
	Controlli qualità			
Esito prova di tenuta:	Positivo			
Esito valore del bianco complessivo:	Positivo ·			
Esito conformità requisiti Par. 5.2	Positivo			
Esito conformità criterio isocinetico	Esito conformità criterio isocinetico Positivo			

Identificazione della posizione di campionamento: Per la descrizione del numero e posizione dei punti di campionamento nel piano di campionamento (eseguito ai sensi della UNI EN 13284-1:2017) fare riferimento a quanto riportato nel dettaglio analitico della UNI EN ISO 16911-1:2013

N° prova	Identificazione Campione	Portata media Volume (campionamento) campionato		Polveri su Filtro	Polveri nei Risciaqui	
		[Vmin]	[m ₃]	[mg]	[mg]	
1	19ES09846	18,53	0,940	0,82	0,02	
2	19ES09804	17,31	0,864	0,43	0,02	
3	19ES09806	16,73	0,841	0,62	0,02	

Foglio 4 di 5

AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI: EN ISO 9001:2015 SISTEMA DI GESTIONE AMBIENTALE UNI EN ISO 14001:2015 LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13471/19

DETTAGLI ANALITICI

Riferimento: UNI EN 14385:2004 e UNI EN 13211:2003 + UNI 12846:2013

Punti e piano di campionamento: Per la descrizione del numero e posizione dei punti di campionamento nel piano di campionamento (eseguito ai sensi della UNI EN 13284-1:2003) fare riferimento a quanto riportato nel dettaglio analitico della UNI EN ISO 16911-1:2013

Tipologia campionamento:

Isocinetico

Diametro ugello:

6 mm

Caratteristiche del filtro:

Filtro in fibra di quarzo con diametro da 47 mm.

Assorbitori:

• tipologia:

Gorgogliatori per gas in vetro poroso

• soluzione di assorbimento:

HNO₃ 3,3% (m/m) + H₂O₂ 1,5% (m/m) - UNI EN 14385:2003

KMnO₄ 2% + H ₂SO₄ 10% - UNI EN 13211:2003 + UNI 12846:2013

Procedimento analitico:

Iniezione diretta soluzione di assorbimento tal quale. Metodo analitico ICP-OES – UNI EN 14385:2003 Iniezione in flusso, agente di riduzione soluzione Stagno cloruro (II). Metodo analitico CVAAS – UNI EN 13211:2003 + UNI 12846:2013

1º Campionamento
Volume campionato Metalli: 0,8560 Nm3 - Velocità media nel condotto: 19,76 m/s - Grado di isocinetismo: 0,63 %
Volume campionato Mercurio: 0,1178 Nm3 - Velocità media nel condotto: 19,76 m/s - Grado di isocinetismo: 1,00 %

Total disposition of the control of				
Parametri	R	isultati Campione (conc	Risultati Bianchi	
	LOQ (mg/Nm³)	3º Assorbitore (mg)	Conc. % (3° ass. / con. tot. ass.)	Concentrazione di bianco di camp
Mercurio	< 0,006	0,00000	n.a.	0,00000
Arsenico	< 0,0030	-0,00126	n.a.	-0,00046
Cadmio	< 0,0030	0,00088	> 10	0,00084
Cobalto	< 0,0030	0,00088	> 10	-0,00006
Cromo totale	< 0,0030	0,00034	> 10	0,00010
Manganese	< 0,0030	-0,00009	< 10	-0,00006
Nichel	< 0,0030	-0,00013	n.a.	0,00000
Piombo	< 0,0030	0,00000	n.a.	0,00006
Stagno	< 0,0030	-0,00018	n.a.	-0,00064
Tallio	< 0,0030	-0,00031	n.a.	-0,00058
Vanadio	< 0,0030	0,00005	n.a.	0,00006
Antimonio	< 0,0030	-0,00023	n.a.	0,00008
Rame	< 0,0030	-0,00086	n.a.	-0,00004

n.a.: non applicabile conc. < LOQ

Concentrazione bianco ∑ Metalli (mg/Nm³):

0,00133

Rapporto (%) bianco / Limite:

< 10

Foglio 5 di 5

AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 SISTEMA DI GESTIONE AMBIENTALE UNI EN ISO 14001:2015 LAB Nº 0142 L

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

ALLEGATO AL RAPPORTO DI PROVA N. 13471/19

	20	Campionament

Volume campionato Metalli: 0,8512 Nm³ - Velocità media nel condotto: 19,83 m/s - Grado di isocinetismo: 0,62 % Volume campionato Mercurio: 0,1236 Nm³ - Velocità media nel condotto: 19,83 m/s - Grado di isocinetismo: 1,00 %

Parametri	Risultati Campione (concentrazione)			Risultati Bianchi
	LOQ (mg/Nm³)	3° Assorbitore (mg)	Conc. % (3° ass. / con. tot. ass.)	Concentrazione di bianco di camp
Mercurio	< 0,006	0,00000	n.a.	0,00000
Arsenico	< 0,0030	-0,00215	n.a.	-0,00046
Cadmio	< 0,0030	-0,00028	< 10	0,00084
Cobalto	< 0,0030	0,00036	n.a.	-0,00006
Cromo totale	< 0,0030	0,00021	n.a.	0,00010
Manganese	< 0,0030	-0,00002	< 10	-0,00006
Nichel	< 0,0030	-0,00006	n.a.	0,00000
Piembo	< 0,0030	-0,00026	n.a.	0,00006
Stagno	< 0,0030	-0,00039	n.a.	-0,00004
Tallio	< 0,0030	0,00043	n.a.	-0,00058
Vanadio	< 0,0030	0,00014	n.a.	0,00006
Antimonio	< 0,0030	0,00040	n,a,	0,00008
Rame	< 0,0030	-0,00091	n,a.	-0,00004

n.a.; non applicabile conc. < LOQ

Concentrazione bianco ∑ Metalli (mg/Nm³):

0,00134

Rapporto (%) bianco / Limite:

< 10

3º Campionamento

Volume campionato Metalli: 0,8243 Nm² - Velocità media nel condotto: 19,53 m/s - Grado di isocinetismo: 0,91 %
Volume campionato Mercurio: 0.1271 Nm² - Velocità media nel condotto: 19,53 m/s - Grado di isocinetismo: 1,00 %

Parametri	R	Risultati Campione (concentrazione)		
	LOQ (mg/Nm³)	3° Assorbitore (mg)	Conc. % (3° ass. / con. tot. ass.)	Concentrazione di bianco di cam (mg)
Mercurio	< 0,006	0,00000	n.a.	0,00000
Arsenico	< 0,0030	-0,00114	n.a.	-0,00046
Cadmio	< 0,0030	0,00110	> 10	0,00084
Cobalto	< 0,0030	-0,00061	n.a.	-0,00006
Cromo totale	< 0,0030	0,00108	п.а.	0,00010
Manganese	< 0,0030	-0,00001	< 10	-0,00006
Nichel	< 0,0030	0,00072	n.a.	0,00000
Piombo	< 0,0030	-0,00026	n.a.	0,00006
Stagno	< 0,0030	-0,00004	n.a.	-0,00004
Tallio	< 0,0030	0,00066	> 10	-0,00058
Vanadio	< 0,0030	-0,00003	n.a.	0,00006
Antimonio	< 0,0030	-0,00006	n.a.	0,00008
Rame	< 0,0030	0,00083	n.a.	-0,00004

n.a.: non applicabile conc. < LOQ

Concentrazione bianco ∑

0,00138

Rapporto (%) bianco / Limite

Metalli (mg/Nm³):

< 10

Il Responsabile del Settore Emissioni/SME